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Abstract: -Server applications which are running inside production cloud infrastructures are prone to various 

performance problems like software hang, performance slowdown, etc. When those problems occur, developers 

often have little clue to diagnose and localise these problems. PerfTrace an anomaly Fault localization & diagnostic 

tool which builds on PerfCompass and Hytrace diagnostics tools and uses an amalgam of static analysis schemes 

and dynamic runtime analysis schemes. Both these schemes have advantages as well as limitations. PerfTrace tries 

to incorporate only the advantages of these schemes. 
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I.   INTRODUCTION 

Infrastructure-as-a-service (IaaS) clouds have become increasingly popular by allowing its users to access computing 

resources in a highly cost-effective way. There are multiple tenants sharing the same physical resource as a result 

performance anomalies arise, these anomalies are laborious to diagnose because the user has restricted diagnostic 

information to localize the fault, as a result is of the main concerns for users. 

This paper introduces PerfTrace an anomaly Fault localization & diagnostic tool. It is an amalgam of static analysis 

schemes and dynamic runtime analysis. Both these schemes have advantages as well as limitations. PerfTrace tries to 

incorporate only the advantages of these schemes. 

PerfTrace builds on the work of – PerfCompass [19], Hytrace [20] and Pip [21]. This paper gives an overview of all these 

tools and take about their advantages, disadvantages and how integrating all these schemes into one idea will give 

remarkable results. 

Summary of the State of the Art 

There are a number of runtime performance anomaly fault localiztion tools avalable e.g., [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]. 

These techniques are parochial and can only provide course grained fault localization.However some white-box and gray-

box schemes, e.g, ., [15, 16, 17, 18] can provide fine-grained fault localiztion but due to expensive instrumentation these 

techniques are impractical.  

Although techniques like [12, 13, 14] provide both course and fine grained fault localization, they need an extensive 

profiling phase to extract models which are not possible in case of Iaas Clouds.Debugging tools liks [18] does combine 

kernel and space tracing which causes a high overhead to applications. Moreover, all the existing work do not necesarlly 

distiguish between entern and intenal faults. 

Apache httpd 

In this section we talk about the challenges the user faces in diagnosis of a performance bug. For this purpose we take the 

example of Apache-httpd. This type of bug is one of the most common bug and arrises when the user restarts the Apache 

server. As a result the web server is changed from listening to two port to just one port.  When the Apache server restarts 
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httpd consumes complete 100% CPU and it wont respond to requests if at even one stage of execution it has more than 

one listening socket which is configured , it is then subsequently reconfigured with "Apachectl restart" or "Apachectl 

graceful" to have a single listening socket, which then corresponds to one  

of the previously existing sockets. The problem here is that , 0_NONBLOCK option is set on the reused socket in 

previous initialisation and later that part of code is expected to make a blocking "accept" call on that socket e.g. 

/server/mpm/prefork/prefork.c:591. This call will return EWOULDBLOCK/EAGAIN where the case is not that 

specifically handled , it causes a loop in the MPM (e.g. at server/mpm/prefork/prefork.c:522) with full utilisation of CPU. 

We can fix this by clearing the O_NONBLOCK option on the reused socket provided that there is only the one listening 

socket. 

TABLE 1: Steps to reproduce 

$ tar xjf httpd-2.0. 5.tar.bz2 

$ cd httpd-2.0.5/ 

$ ./configure -prefix=/home/username/apache2-test 

$ make 

$ make install 

$ cd home/username/apache2-test 

$ vi /conf/httpd.conf  

Change "Listen 80" to "Listen 10080"  

$ /bin/apachectl start 

Locate localhost:10080, and check if server still working.                                          

$ vi /conf/httpd.conf 

"Listen 10081" is added on a new line after the existing line "Listen 10080". 

$ /bin/apachectl restart 

Locate localhost:10081, and check if server still working.                                        

$ vi conf/httpd.conf 

$ vi /conf/httpd.conf 

"Listen 10081"-delete. 

$ /bin/apachectl restart 

$top 

Browse to local host:10080. 

TABLE 2: httpd result table(Completely reproducible) 

Actual Results Expected Results Problem 

Reproduced on 

Normal CPU 

utilisation.  Apache 

should serve the 

default installation 

page on local host: 

10080. 

100% CPU 

utilisation, shared 

amongst the five 

httpd child 

processes.  Apache 

does not serve 

anything on any 

port. 

Apache 2.0.54 and 

2.0.55 on i686 

Fedora Core 3 

Linux kernel 

2.6.12-1.1378_FC3 

Apache 2.0.55 on 

Linux kernel 

2.4.20, PowerPC 

MPC8555 CPU. 

This bug reuses the socket from the previous running instance, without changing any of the socket setting. Unfortunately, 

the socket was actually set to not allow blocking calls in app_setup_listeners function through the appr_socket_opt_set 

function in previous running instance, when two ports were configured. 
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TABLE 3: Apache-httpd bug Patch 

-if (app_listeners && app_listeners -> next) { 

+ use_nonblock = app_listeners && app_listeners -> next; 

 for (lr = app_listeners; lr; lr = lr -> next) {  

       appr_status_t status; 

       .... 

        status = appr_socket_opt_set(lr -> sd, 

                        APPR_SO_NONBLOCK, 

-                                                          1); 

+                                     use_of_nonblock); 

         if (status != APPR_SUCCESS){ 

                apP_log_perror(APPLOG_MARK, APPLOG_STARTUP |    

APPLOG_ERR, status, pool,  

                                      "app_listen_open: unable to "  

-                               + "make socket non-block");  

+                   + "control non-blocking status"); 

                     return (-1);  

                 } 

          } 

-  } 

This patch passes a variable use_nonblock to the invocation of appr_socket_opt_set inside the function 

app_setup_listeners. This changes allows to enable blocking calls on reused socket before actually making blocking calls. 

Our Contributions 

This paper presents PerfTrace. PerfTrace is an idea which is designed to use the strength of PerfCompass [19], Hytrace 

[20] and Pip [20]. It is a scheme that can be used for performance anomaly fault localization and bug diagnosis. The main 

challenge is to design a scheme which can incorporate the strengths of the three schemes and try to overcome their 

individual disadvantages. PerfTrace will perform anomaly fault localization using the studies of PerfCompass [19] and 

Bug diagnosis using the studies of Hytrace [20]. It also traces the behaviour of a running application using Pip [21].  

This paper discusses in brief Hytrace [20], PerfCompass [19] and Pip [20] schemes and also presents their evaluations 

methodology and give limitations of each. 

PerfTrace will be light weight and generic application like PerfCompass [19] and won’t require any additional advance 

application profiling. It will be applicable to any multi-processed or multi-threaded applications. It will only use kernel-

level system call trace only as a result will be light-weight and generic in nature. Particularly, PerfTrace like PerfCompass 

[19] will perform diagnosis, and try to find if performance anomaly is caused by an internal or external fault. 

PerfTrace will be a static anti-pattern detection scheme like Hytrace [20] which can also detect dynamic abnormal 

behaviour but provide high coverage without the expense of precision unlike Hytrace [20]. Combining such schemes 

(static anti-pattern detector and a dynamic abnormal behaviour detector) will retain the high coverage and lost coverage 

can be regained, as most alarms would not be reported by both schemes that conduct diagnosis but from different 

perspective. To overcome this PerfTrace will implement within its functionality a generic rule checker which will detect 

function that bear patterns which might be vulnerable to performance anomalies. When performance problems such as 

hang and slowdown are observed by automated monitors, by the use of run-time analysis we identify a ranked list of 

functions that produce abnormal behaviour and as a result functions that appear suspicious from both static and dynamic  

analysis are reported. It will be platform independent schema. 

PerfTrace using Pip [21] traces the behaviour of a running application, checks its behaviour against programmer 

expectations, and then it displays the resulting behaviour (valid or invalid) in a GUI using several different visualization 

techniques. 
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II.   PERFCOMPASS 

A performance when occurs anomaly, the PerfCompass [19] analysis module is then dynamically triggered to perform an 

online fault localisation within the faulty VMs. We can identify the faulty VMs using the existing online black-box fault 

Localisation tools [22,23, 24]. However, when we ought to differentiate between the external and internal faults, we 

cannot then treat the entire application VM as a single black-box. PerfCompass will first extract the different groups of the 

closely related system calls, which are called execution units, from the continuous raw system call traces. We can then 

first easily group the system caperlls based on process/thread ID. Though, we observe that some server systems (e.g., 

Apache web server) also use a pre-allocated thread pool and often do reuse the same thread to perform different tasks. So 

when we further split the per-thread execution units based on inter-system-call time gap (e.g., 99th percentile value) to 

then mitigate in accurate system call grouping caused by the thread reuse. 

After extracting different the execution units, we then perform change detection over the system call execution time or the 

system call frequency moving average values to detect if the execution unit is affected by the fault. We derive then a fault 

onset time for each of the affected execution unit to quantify how quickly the fault impacts the affected execution unit. 

Fault Onset Time Identification 

To distinguish between the external and internal fault, we first will extract the two pieces of the important information 

from raw system call traces of each of the execution unit: 1) which of the execution units are affected by the fault? and 2) 

when does the fault impact the first start in each of the execution unit? To detect if an execution unit is affected by the 

fault, we first have to analyse the system calls execution time. The observation is that if the fault causes the application 

performance to slowdown, the system call execution time should also be increased. 

Therefore, when we compute the per system call execution time and detect if the fault affects the execution unit by 

identifying any outlier system call execution times. We then perform outlier detection using standard criteria (i.e., > mean 

+ 2×standard deviation). 

We also observe that if the different system calls often have varied execution time based on their functions. Therefore, it 

is necessary to distinguish the different kinds of system calls (e.g., sys read, sys write) and then compute the per system 

call execution time for each kind of system call separately. If any of the system call type is identified as an outlier, we 

then infer that this execution unit has been affected by the fault. 

Some of the performance anomalies do not manifest as changes in the system call execution time. For example, if the 

performance anomaly is caused by one incorrect loop bug, we might then observe the system calls inside the loop iterate 

more number of times when the bug is triggered, than during the normal execution. So, then we maintain a frequency 

count for each of the system call type. An execution unit is said to be affected by the fault if we detect anomalous changes 

in either the system call execution time or the frequency for any type of system call. 

Fault Localization Schemes 

Our fault localisation schemes are then based on extracting and analysing the two fault features. We first will extract the 

fault impact feature to infer if the fault has a global or local impact. We then define the fault impact factor metric to 

calculate the percentage of threads that are then affected by the fault directly. If the thread consists of multiple execution 

units, then we only consider the fault onset time of the first execution unit that is affected by the fault since we only want 

to identify when the fault first affected each thread. We then discuss how to set fault onset time threshold later in the 

section below. If the fault onset time of the affected thread is smaller than any pre-defined threshold (e.g.,1second), we 

can say that this thread is affected by the fault directly. The fault impact factor if is close to 100%, we can infer that the 

fault would be an external fault; If it’s less than 100%, fault impact factor, we can them infer that the fault would be an 

internal fault. 

However, if the fault impact factor has borderline value (e.g., 90%), then we extract a fault onset time dispersion feature 

to be able to identify whether the fault affects different threads at the same time or at a different time. Since the external 

fault affects all the running threads uniformly, the affected threads are then likely to show the fault impact at a similar 

time after the fault is triggered. We then use the standard deviation of the fault onset time among all the threads that are 

affected to quantify the fault on set time dispersion. If it is small, that is the fault onset dispersion, then we infer that this 

fault is external. However, if it’s an internal fault it is likely to directly affect a subset of threads executing the buggy code 
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and then indirectly affect other threads that communicate with the directly affected threads. Therefore, if we observe a 

large fault onset time dispersion, we infer the fault is an internal one. 

Our main observation is that if performance anomaly is caused by an external fault, then we often see that the fault 

directly affects all the running execution units simultaneously. However, an internal fault will only directly affect a subset 

of execution units at the beginning although the impact might propagate to other execution units through communications 

or shared resources at a later time. Therefore, we then use the impact factor to quantify the scope of direct impact from the 

fault to the different execution units and also the fault onset time dispersion to quantify the onset time difference among 

the different affected execution units. We can then infer if the performance anomaly is caused by an external or internal 

fault by checking if the fault has a global or local direct impact and also if the fault onset time durations of different 

execution units are similar. 

Experimental Results 

TABLE 2.1: Apache 

Fault Fault 

Impact 

Factor 

Fault on set 

time 

dispersion 

Correct 

diagnosis 

CPU cap problem 

(external) 

100±0% 7±1ms Yes 

Packet loss problem 

(external) 

100±0% 4±1ms Yes 

Flag setting bug 

(internal) 

50±0.5% 374±63ms Yes 

TABLE 2.2: SQL 

Fault Fault 

Impact 

Factor 

Fault on set 

time 

dispersion 

Correct 

diagnosis 

I/O interference 

problem (external) 

100±0% 15±7 ms Yes 

CPU cap problem 

(external) 

94±2% 17.77±4 ms Yes 

Data flushing bug 

(internal) 

62±3% 721±4 ms  

Dead lock bug 

(internal) 

40±0.5% 38±3 ms Yes 

TABLE 2.3: Hadoop 

Fault Fault 

Impact 

Factor 

Fault on set 

time 

dispersion 

Correct 

diagnosis 

I/O interference 

problem (external) 

98±1% 16±3 ms Yes 

CPU cap problem 

(external) 

98±0% 39±5 ms Yes 

Endless read bug 

(internal) 

81±0% 23±6 ms  

Thread shutdown bug 

(internal) 

85±0.5% 110±20 ms Yes 
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TABLE 2.1, TABLE 2.2 and TABLE 2.3 [19] provide a summary of our fault localisation results for the Apache, MySQL 

and Hadoop under the various external and internal faults. The results show us that PerfCompass [19] accurately 

diagnoses all of external faults as external and all of internal faults as internal. All of the tested external faults have impact 

factors close to 100%, that clearly indicates each of them as external. Similarly, most of the internal faults for these 

systems have an impact factor significantly less than 100%, which then clearly indicates each of them as internal. We 

have also observed that most internal faults have significantly larger fault onset time dispersion values than the external 

faults of the same application. 

PerfCompass Overhead 

We will now evaluate the overhead of the PerfCompass [19] system. Figure 4 here shows us the runtime overhead 

imposed by PerfCompass on each of the tested systems. For Apache, MySQL, and Squid we have used httperf to send 

fixed number of requests, and recorded the average response time both with and without PerfCompass. We have used a 

request rate of 100 requests per second for Apache and Squid, and a request rate of 20 requests per second for MySQL1. 

For Cassandra, we then ran a simple database insertion workload, recording the average time of processing. For Hadoop 

we ran the Pi sample job, recording the average time of processing. We then ran all the tests 5 times, reporting the mean 

and standard deviation. We observed that PerfCompass imparts 1.03% runtime overhead on average. We also then 

measured their source consumption of PerfCompass. We found that the PerfCompass imparts between 2-3% CPU load 

and has a small memory footprint (about 256KB). We also believe that the PerfCompass is light-weight, which therefore 

makes it practical for online performance anomaly fault localisation in production IaaS clouds. 

 

Fig. 1. The overhead imposed by PerfCompass on different server systems. 

III.   HYTRACE 

Hytrace Static Analysis 

Our module of static analysis focuses on detecting the potential faulty functions that are prone to performance problems. 

Its design has two parts. First, designing the target for static analysis — identifying a few static code patterns that are 

vulnerable to performance problems, which we will refer to as rules. Second, designing the static analysis algorithm — 

designing how to analyse the program and discovering the code regions that matching the Rule Design Principles. Our 

rule designing follows two principles. First, different from a lot of stand-alone static checkers, our design favours the 

generality over precision. We should then look for code patterns that might be-indicators of the performance problems, 

not the patterns that are guaranteed to cause performance problems. This principle will help us avoid missing the true 

buggy functions. Since the runtime inference component of the Hytrace [20] can effectively filter out the many falsely 

identified functions that are detected by the static analysis, the final precision of the Hytrace [20] will be much better than 

the precisions of these static rules. Second, like in all the static checkers, we should find the statically checkable rules. 

That is, if a code region matches a rule or not should be decidable without any runtime information. For example, 

checking if a function call uses a constant value as the parameter is statically checkable. However, if a variable can take 

on a particular value during the program, execution often cannot be checked statically. We have randomly sampled 20 out 

of 133 performance bugs. Here we have derived a set of rules that will meet our design principles empirically based on 

our experience of studying those 20 real-world performance bugs in the server applications. For cross validation purpose , 

we use another disjoint set of 20 bugs to perform the same rule extraction process. (the details about all the 133 bugs are 

available online). We found that we will extract the same set of generic performance bug detection rules. The 40 sample 

bugs are our rule generation training set. The 133 bugs form Hytrace [20] testing set and are then used for our 
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experimental evaluation. It should be noted that, Hytrace [20] can be extended easily with other rules that follow our 

design principles and are integrated with any static analysis tools that can help identify a set of candidate performance 

problem-prone functions. We will now specify the rules used by the Hytrace [20] static analysis component. 

 

Fig. 2.: R1: Constant parameter function calls 

 

Fig. 3.: R2 Null parameter function calls 

 

Fig.4.: R3: Unsafe function calls. 

 

Fig. 5.: R4: Unchanged loop exit condition variables 

Hytrace Dynamic Analysis 

The design principle of the Hytrace [20] dynamic analysis component is very similar to that of the static analysis part. Our 

goal here is to relax the requirement for the precision and maximise the coverage (i.e., avoid miss detections) by including 

all of the potential root cause related functions. This, current Hytrace-dynamic module extends an existing dynamic cloud 

performance debugging tool PerfScope [25] to achieve our design goal. We chose PerfScope cause it imposes low 

overhead and it doesn’t require the source code access, which makes it practical for the production of cloud 

infrastructures. However, like other dynamic techniques [26], [27], etc., PerfScope sacrifices the coverage in order to 

achieve high precision, which makes it inevitably miss identifying the buggy functions that have major contributions to 

the root cause. Based on this, the Hytrace-dynamic is proposed to address the coverage issue in PerfScope. When a 

performance anomaly is detected using an existing online anomaly detection tool [28], we first trigger a runtime system 

call analysis to identify the abnormal system call sequences produced by the server applications. Specifically, if we 
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analyse a window of recent system call trace and identify which types of the system calls (e.g., sys_read, sys_futex) 

experience abnormal changes in either their execution frequency or their execution time. We first divide a window of the 

system call trace into multiple execution units based on the thread ID. We then have to apply a top-down hierarchical 

clustering algorithm [28] to group those execution units that perform similar operations together based on their 

appearance vector feature. Then, we use the nearest neighbour [29] algorithm to perform the outlier detection within each 

cluster to identify the abnormal execution units. Frequent episode mining is then used on those abnormal execution units, 

to identify the common abnormal system call sequences (i.e., S1). For example, from trace of the HDFS-3318, a sequence 

{sys_gettimeofday, sys_read, sys_read, sys_gettimeofday} is discovered which is executed more often than usual. 

Next, we identify the application functions that have issued the abnormal system call sequences which are identified 

above. 

We then again use frequent episode mining to extract the common system call sequences (i.e., S2) produced by the 

different application functions. These sequences (S2) are used then as signatures to match with the system call sequences 

(S1) whose execution frequencies or time are identified to be abnormal. For example, in the HDFS-3318, function 

Reader.performIO is found to be often producing system call sequence {sys_gettimeofday, sys_read, sys_read, 

sys_gettimeofday}, which is then used as its signature. When {sys_gettimeofday, sys_read, sys_read, sys_gettimeofday} 

is detected as one of the abnormal system call sequences, Reader.performIO is matched as one of the candidate buggy 

function. In comparison to the existing dynamic analysis tools (e.g., PerfScope), the Hytrace-dynamic integrates runtime 

execution path analysis with the abnormal function detection for the bug detection coverage to increase. Specifically, we 

then extend the candidate function list by adding the k-hop caller functions of the abnormal functions identified by the 

dynamic analysis tool. We also have conducted sensitivity study on the number of caller function hops (e.g., k) to evaluate 

the tradeoff between the coverage and precision. 

Hybrid Scheme 

The main idea of the Hytrace [20] is to combine the static and dynamic analysis techniques for achieving both the high 

coverage and high precision of performance diagnosis. Hytrace-static favours, coverage (i.e., completeness) over 

precision. It captures the potential buggy functions which are vulnerable to the performance problems over the static code 

pattern matching. The Hytrace-dynamic favours both the coverage and the ―relaxed‖ precision. It identifies all the caller 

functions and the buggy functions which have abnormal practices during the runtime. The Hytrace approaches the 

leverages of the two carefully designed static and dynamic analysis components that are complementary to each other. 

Although each of the component is prone to false positives, the combination of these two leverages program semantic and 

the run-time behaviour information, and hence we can achieve much higher precision than the pure-static or pure-dynamic 

techniques. When performance symptom like a hang or a slowdown is observed by either of the users or an automated 

monitoring tool, the Hytrace then runs its dynamic component to identify a ranked list of functions that are behaving 

suspiciously, judging by the abnormality of the system-level metrics. Hytrace then compares this list which is produced 

by the dynamic component with the list of suspicious functions identified by the Hytrace static component, and then 

removes the functions that only appear in one list, and adjusts the ranks of the remaining functions accordingly. For 

example, if the Hytrace-dynamic identifies the three buggy functions foo (rank: 1), bar (rank: 2), and baz (rank: 3) but bar 

doesn’t include any static anti-patterns, the bar is removed and the final list becomes foo (rank: 1), baz (rank: 2). The rank 

of the baz gets improved because we remove the false positive function bar. 

Limitations 

The current evaluation of ours focuses on the single node performance bugs. For distributed performance bugs, the 

Hytrace’s diagnosis schemes are still quite preliminary. It generates a consolidated buggy function list using the 

intersection among all buggy function lists produced by the different faulty nodes. However, the distributed system bugs 

can manifest as a chain of the abnormal functions over multiple dependent nodes. Hytrace currently doesn’t consider such 

causal relationships between the distributed components. Previous work (e.g., FChain [34], PCatch [31]) has developed 

the distributed bug diagnosis tools based on the distributed system causal analysis. Hytrace can then integrate with those 

tools to achieve more precise distributed system performance bug diagnosis. The Hytrace-static component has currently 

five generic rules. Though our rule set can achieve 100% coverage on all the 133 performance bugs, we do not claim that 

these five rules can identify all the performance problems that are reported by the production cloud users. Hytrace 

framework allows the users to easily add new rules with a few code changes. Furthermore, we currently didn’t find any 
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unsafe function in Java programs which matches with our rule R2. We do plan to extend this rule by adding more I/O 

related functions in Java, which is a part of our future work. The Hytrace-dynamic integrates the runtime execution path 

analysis with abnormal function detection to achieve the high coverage. Although, it can’t identify all the root cause 

functions in every case. 

IV.   PERFTRACE 

PerfTrace is an idea of combining the two above mentioned tools along with Pip scheme so that it can perform anomaly 

localization, bug diagnosis and behaviour tracing for running applications. We won’t need to choose between these two 

scheme on the basis on our issue, PerfTrace can solve both the problems for us simultaneously. While developing 

PerfTrace we need to take care that we implement maximum advantages of Hytrace and PerfCompass, and at the same 

time minimize their individual limitations. PerfTrace is an ideal tool and works for multiple platform i.e. it is platform 

independent. As it is an amalgam of both these schemes it can easily differentiate between external and internal faults 

without the requirement of any source code or runtime instrumentation. PerfTrace uses a light weight kernel level system 

call for the purpose of tracing and performing online system call trace. PerfTrace is light weight and non-intrusive making 

it a perfect tool for IaaS clouds. 

PerfTrace is a hybrid approach in diagnosing real world performance bugs. It combines rule based static analysis and 

runtime inference techniques in order to achieve higher accuracy, then what can one achieve using pure static or pure 

dynamic approaches. 

V.   CONCLUSION 

In this paper we have presented an overview of Hytrace and PerfCompass understood there basic working and talked 

about their limitations. We also have introduced a new idea to concatenate these two tools- PerfTrace. PerfTrace can 

greatly improve coverage and precision comparing with existing techniques. PerfTrace will imposes less than 3% CPU 

overhead to the testing cloud environments. PerfTrace can be easily implemented and evaluated variety of commonly 

used open source server systems like Apache, MySQL, Hadoop, etc. PerfTrace can accurately diagnose all environment 

issues in the shared IaaS clouds and real software bugs. 
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